Unsupervised learning of prototypes and attribute weights

نویسندگان

  • Hichem Frigui
  • Olfa Nasraoui
چکیده

In this paper, we introduce new algorithms that perform clustering and feature weighting simultaneously and in an unsupervised manner. The proposed algorithms are computationally and implementationally simple, and learn a di1erent set of feature weights for each identi2ed cluster. The cluster dependent feature weights o1er two advantages. First, they guide the clustering process to partition the data set into more meaningful clusters. Second, they can be used in the subsequent steps of a learning system to improve its learning behavior. An extension of the algorithm to deal with an unknown number of clusters is also proposed. The extension is based on competitive agglomeration, whereby the number of clusters is over-speci2ed, and adjacent clusters are allowed to compete for data points in a manner that causes clusters which lose in the competition to gradually become depleted and vanish. We illustrate the performance of the proposed approach by using it to segment color images, and to build a nearest prototype classi2er. ? 2003 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Unsupervised Learning of Prototypes and Attribute Weights Summary

In this paper, we introduce new algorithms that perform clustering and feature weighting simultaneously and in an unsupervised manner. The proposed algorithms are computationally and implementation ally simple, and learn a different set of feature weights for each identified cluster. The cluster dependent feature weights offer two advantages. First, they guide the clustering process to partitio...

متن کامل

Online learning of positive and negative prototypes with explanations based on kernel expansion

The issue of classification is still a topic of discussion in many current articles. Most of the models presented in the articles suffer from a lack of explanation for a reason comprehensible to humans. One way to create explainability is to separate the weights of the network into positive and negative parts based on the prototype. The positive part represents the weights of the correct class ...

متن کامل

Combining Classifier Guided by Semi-Supervision

The article suggests an algorithm for regular classifier ensemble methodology. The proposed methodology is based on possibilistic aggregation to classify samples. The argued method optimizes an objective function that combines environment recognition, multi-criteria aggregation term and a learning term. The optimization aims at learning backgrounds as solid clusters in subspaces of the high...

متن کامل

Explaining Radiological Emphysema Subtypes with Unsupervised Texture Prototypes: MESA COPD Study

Pulmonary emphysema is traditionally subcategorized into three subtypes, which have distinct radiological appearances on computed tomography (CT) and can help with the diagnosis of chronic obstructive pulmonary disease (COPD). Automated texture-based quantification of emphysema subtypes has been successfully implemented via supervised learning of these three emphysema subtypes. In this work, we...

متن کامل

Combining Classifier Guided by Semi-Supervision

The article suggests an algorithm for regular classifier ensemble methodology. The proposed methodology is based on possibilistic aggregation to classify samples. The argued method optimizes an objective function that combines environment recognition, multi-criteria aggregation term and a learning term. The optimization aims at learning backgrounds as solid clusters in subspaces of the high...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Pattern Recognition

دوره 37  شماره 

صفحات  -

تاریخ انتشار 2004